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ELLIPSOiDAL ESTIMATES OF A CONTROLLED SYSTEM'S ATTAINABILITY DOMAIN* 

F. L. CHERNOUS'KO 

An inner ellipsoidal estimate (best, in a certain sense) of the attainability domain 
is obtained for a linear controlled system. 

1. Statement of the problem. Consider the linear controlled system 

dad& = C (t)s + K (t)u + f (t) (1.1) 

where t is time, 5 is the n-dimensional phase-coordinate vector, u is the m-dimensional 

control vector, C(t) and K(t) are (n X n)-and (n X m )-matrices, respectively, and f(t) is an 
n-dimensional vector. Functions C (t), K (t), f (t) are continuous for t > t,. The notation 

sEzE(a, 0) (1.2) 

indicates that vector x belongs to the ellipsoid 

(Q-1 (z - a), z - a)< 1 (1.3) 

Here a is the n-dimensional vector of the ellipsoid's center, Q is a symmetric positive de- 
finite (n X n )-matrix, and the parentheses denote the scalar product. As Q-0 the ellip- 
soid (1.2), (1.3) shrinks to the point 5 = a. Assume that the initial data and the controls 
for system (1.1) are ellipses 

z (to) E E (a,, Qo), u (4 E E (0, G (Oh t > to (1.4) 

Here a,, is a specified n-dimensional vector and Q,, and G are symmetric positive definite 
( n X n)- and(m X m) -matrices, respectively. 

The set of possible values of solutions z(t)of system (1.1) at the instant t for any 
s&J and u(t)satisfying constraints (1.4) is called the attainability domain M(t)Eor system 
(l.l), (1.4). It is well known that M(t)is a bounded convex set. The attainebility domain 
is an important characteristic of a controlled system /l- 3/ and is used when solving control 
theory and differential game problems. The effective construction of setM (t)for sufficiently 
large n is significantly difficult and requires a large amount of computations. Therefore, 
it is of interest to obtain simple estimates, both outer as well as inner, for set M(t). In 
the present paper we examine ellipsoidal estimates of the form 

E (a_ (t), Q- 0)) c M 0) c E (a+ (0, Q, (t)) (1.5) 

where a_, a+ are the centers and Q_, Q+ are the matrices of the ellipsoids; the subscript 
minus refers to the inner approximation and the plus, to the outer ones. 

Certain outer ellipsoidal estimates of the attainability domain were constructed in /4- 
6/. An outer ellipsoidal estimate, locally optimal in the following sense, was given in /7/. 
At each instant there is constructed an ell'ipsoid of least volume, described around the at- 
tainability domain and generated by the ellipsoidal approl(imation of this domain at a near 
preceding instant. This estimate is based on the optin@ outer approximation of the sum of 
two ellipsoids (the ellipsoid at least volume, containing the sum of two ellipsoids, is con- 
structed). 

The functions a+ and Q+ for the outer estimate indicated satisfy the equation systems and 
initial conditions /7/ 

a%+ / dt = C (t)a+ + f (t), dQ+ / dt = C (t)Q+ + Q+C’ (t) + qQ+ -t q-‘R (t) (1.6) 

R (t) = K (W (W (t), q = {n-l Tr [Q-‘R (t)l)’ 2 , a+ (to) = afir Q, (tn) = Q,, 

The primes denote transposition and Tr is the trace of the matrix. We obtain the outer esti- 
mate in (1.5) by integrating system (1.6). 
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In the present paper we have constructed a locally-optimal inner estimate of the attain- 
ability domain, i.e., we have obtained equations for u_(t) and Q_(t) in (1.5). To do this we 
have solved, as a preliminary, an auxiliary problem on the optimal inner approximation of a 
sum of two ellipsoids: we have constructed the ellipsoid of greatest volume, contained in the 
sum of two ellipsoids. 

2. Auxiliary problem. Let the n-dimensional vectors x1 and 5% belong to the ellip- 
soids 

Xi E E(ai, Qt), i = I, 2 (2.1) 

where Ui are the vectors of the centers and Qi are symmetric positive definite matrices. If 
x1 and x2 take values from (2.1), then their sum lies in a closed convex region S, namely, 

the sum of the ellipsoids 

5 = x1 + xz E 8 = E (al, Q1) + E (a,, Qz) (2.2) 

Let us construct the ellipsoid of greatest volume inscribed in S. At first we transform 
vectors x1 and ~2 linearly, taking both ellipsoids (2.1) to the canonic form 

yi = A (Xi - Ui), pi E E (0, Ddy Di = diag (&I, . . ., din), ,-$ > 0; i = 1, 2; j = 1, . , ,, n (2.3) 

The superscript j denotes the element number. We note that under the linear transformation 
of vector x the parameters of ellipsoid(l.2), (1.3) are transformed in the following manner 

/7/: 

Ax + b CT-Z E (Au + b, AQA’) (2.4) 

where A is a matrix and b is a vector. It is not difficult to verify formula (2.4) directly. 
According to (2.4), for transformation (2.3) we have 

AQiA’ = Di, i = 1, 2 (2.5) 

The transformation matrix A taking ellipsoids (2.1) to canonic form is not unique. It can 
be found by solving the eigenvalue problem /8/ 

01x = WA det (Q1 - aQ*) = 0, Qlzj = hjQzzj, h, > 0, A’ = {zl, . . ., z,} (j = 1, . . ., TZ) (2.6) 

Here the eigenvalues hj are the roots of the characteristic equation and ~1 are the corres- 
ponding eigenvectors which serve as the columns of the transposed matrix A’. Among the roots 
hi there can be multiple ones, but n linearly-independent vectors zI always exist.We note 

that the elements of matrices (2.3) are expressed in terms of the eigenvalues ltj by the eq- 
uations d,j = hi, d,j = 1, j = 1, . . ., n. 

We solve Eqs.(2.3) relative to xi and we represent sum (2.2) as 

x = a, + U2 + A-‘y, y = y, + y, E $, = E (0, D,) + E (0, D2) (2.7) 

The semiaxes of ellipsoids E(0, Di) equal (di’)‘12. The convex region s, from (2.7) is con- 
tained in the parallelepiped 

P: 1 y' I < (d#J + (d:)'j', j = 1, . ., n (2.8) 

Let us prove that the ellipsoid whose semiaxes equal the sums of the corresponding semiaxes 
of ellipsoids E(O, Di) is contained in S,, i.e., 

E (0, D) C S, C P, D = diag (d”, . . ., d”), d’ = [(dj)‘/i $- (dz’)‘/.]*, j = 1, . . ., n (2.91 

To prove this we take any point y E E(O,D) and set y = y, L yl, where 

yij = (dij/di)‘l@. i = 1, 2, j = 1, . ., n (2.10) 

The superscript j is the vector's component number. From the inclusion yt-?E(O,D), i.e., 

from the inequality 

follows, by virtue of relations (2.9) and (2.10) 
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Thus, any vector 9 E E(O,D) can be represented as a sum y1 c yz, where yi E E(O,Di). By 

the same token we have proved the inclusion E(O,D) C S,. 
Let us now prove that ellipsoid E(O,D) has the greatest volume among all ellipsoids 

inscribed in S,. By virtue of the inclusion S,E P (see (Z-9)), it is enough to provethat 
E(O,D) has thegreatestvolume among all ellipsoids inscribed in P. By an extension of 

parallelepiped (2.8) along the coordinate axes, it is transformed into an n-dimensionalcube 

P,*: 1 yj 1 Q 1, j = 1, . . ., n, then ellipsoid (2.9) becomes the unit ball Jyl Q 1. It suffici 
to prove that the unit ball has the greatestvolume among all ellipsods inscribed in cube i),'. 

This assertion is equivalent to the followiIee, among. all parallelepipeds circumscribedaround 
the unit ball the cube P,* has the least volume. The latter assertion can be proved by in- 
duction on the dimension n of the space. The assertion is trivial for n = 1. For n=2 it 
is obvious and signifies that the area of a square circumscribed around a circle is less than 
the area of any circumscribed parallelogram. Suppose that the assertion is true for some n. 
We consider an arbitrary n + l-dimensional parallelepiped P,,+l containing the n + l-dimen- 
sional unit ball. The volume of P,+l equals the product of its height (it is not less than 
the ball's diameter) by the volume of the n-dimensional parallelepiped P, which is the base 

of P,+,. The parallelepiped P,, contains the projection of the n + l-dimensional ball; con- 
sequently, P, contains the n-dimensional ball. By the assumption that the assertion is 
valid for n the volume of P, is not less than the volume of cube P,,*. Hence it follows 
that the volume of P,,+, is not less than the volume of cube P,+l*. The assertion is proved. 

Thus, the E(O,D) from (2.9) is the ellipsoid of greatestvolumeinscribedin S,. Return- 
ing to the variable x in accord with relations (2.7) and (2.4), we obtain the desired ellip- 
soid of greatest volume inscribed in region S of (2.2), in the form 

E (a, Q) c S, a = a, + a,, Q = A-ID (A-l)‘, D’!* = D;i* + Dal?, Di = AQ‘A’, i = 1, 2 (2.11) 

TO construct ellipsoid (2.11) we need to find the matrix A of the transformation takingboth 
the matrices Q1 and Qa to diagonal form. For this it is sufficient to solve the eigenvalue 
problem (2.6). 

3. Examples. lo. Let ellipsods (2.1) be like and similarly oriented: Ql=vQ,, where 
v>o is a scalar. Then, according to (2.11), we have 

D, = AQy4’ = vAQ,A’ = vD, (Q1 = vQ,) , D = (da + i)‘D,, Q = (v+ + I)’ Q I (3.1) 

In this (and only in this) case the region 
ellipsoid(2.11), (3.1) is exact. 

S is an ellipsoid and its approximation by the 
In particular, the approximation is exact in the one-dim- 

ensional case (n=l), as well as when ellipsoids (2.1)-&e balls. 

20. Let us consider the degenerate case when one of the ellipsoids 
ment of the z'-axis, while the other is the unit ball 

Q1 = diag (+, 0,. ., 0), QI = I 

,K n=, , 
are in canonic form and we can take A = I. 

i tl,:LIO is half the segment's length. 

a = a1 + as, Q = ding ((r + i)', 1,. . ., 1) (3.3) 

The volume of the ellipsoid with parameters (3.3) equals 

V, = (T + 1) n"" [r (n/2 + I)]-x (3.4) 

E (al,Q1) is a seg- 

(3.2) 

Both ellipsoids (2.1) 
According to (2.11) 

where r is the Euler gamma-function /9/. For comparison we 
present the volume of the region s, being the union of all 

I _ r unit balls with centers on the segment "I+% +e%+, where e1 
5 io is the unit vector on the xl-axis, I 21 I < r. Recion S con- 

Fig.1 

sists of a cylinder of height 2r with.a base in the form of a 
n-!-dimensional unit ball and of two n-dimensional unit 
hemispheres with centers at the segment's endpoints. The volume 
of region S. equals 

1’s 3 
,+ 2r&-‘) I a 

r w -k 1) + r Nn + WI 
(3.5) 

We set up the ratio of volumes (3.4) and (3.5), characterizing the approximation accuracy 
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Using the formulas for the gamma-function /9/, from (3.5) we obtain the special cases 

Functions (3.6) are given in Fig-l, 

4, Estimate of the attainabilfty domain. We go on to derive the equations for 
u_(t) and Q_(t)from estimate (1.51. We prescribe a sufficiently small increment Iz andwewrite 
the finite-difference approximation of system (1.1) 

r (t + h) = II -r- 52, 21 = (I +- hc)x + kf, 2, = hKu (4.1) 

Here the argument t has been omitted. Suppose that the left-hand inclusion in (1.5) holds at 
instant t. Then from the constraint in (1.4) on the control and from (4.1) and (2.4) we 
obtain 

II 65 M,, M, =, E (u. T h (Ca_ +” /), (I -- hC)Q_ (I IL. hC)‘), z* ET E (0, PK). H = A-GK’ (4.2) 

where ill, is a set containing ellipsoid (4.2). We define a nonsingular matrix A by the rela- 
tions 

AQ_A’ -= D1, A&i’ 1 D,, is - KGK (4.39 

where D,and D, are some diagonal matrices. Equalities (4.3) signify that the transformation 
with matrix A leads (to within terms of higher order in h) both ellipsoids (4.2) to canonic 
form. In order to obtain a_(t -i- h) and Q_(t '- h) we apply to ellipsoids (4.2) the formula 
(2.11) definingelli,psoic?inscribed in region S. We obtain 

(2_ (t - 12) := d_ :- h (Ca_ f f), Q_ fb -.I- h) --= .4-l (LA (1 -!- My_ {f t RC)‘d.‘V- +k (.M?.A’)‘~f~(AW (4.4) 

We transform the formula in (4.4) for Q~(t + h) by expanding it in a series in h and drup- 
ping the terms 0th) 

Qi It i h) = A-' (IAQ_A' -I- L(CQ_ + Q_C)P j h (M?A')";~}+I-')' = A-1 (AQ_A' + h KQ". + Q-&'-t (4.5) 

2 ~AQ_Ai~/~~A~A'~~~?~~ (A-')' 

Dividing the equality in (4.4) for Q_ (f + h) and the equality (4.5) for Q_(t + h) by h and 
passing to the limit as h 40, we obtain the systems of differential equations 

The initiai conditions for systems (4.6) are obtained from t1.41 

a, (&I) = no, Q_ (to) := c&k (4.7) 

The determination of the required parameters of ellipsoid E(a (t), Q_(t)) has been reduc- 

ed to the solving of the Cauchy problems (4.61, (a,'?). The vector a_(t) of the ellipsoid's 
center satisfies the linear matrix system in (4.61, while the symmetric positive definite mat- 
rix Q_(I)satisfies the nonlinear matrix system in (4.6). The matrix d occurringinthelatter 
system depends on t and Q-(t) and must satisfy equalities (4.3); its determination reduces to 
solving for each t an eigenvalue problem of type (2.6). The matrices (Aq_k')lL and (A RA')',J 
in (4.6) are diagonal according to (4.3) and, therefore, commute. The systems in (4.6) for 

a_ and Q are independent and can be itegrated individually. The system in (4.63 and the 
initial condition in (4.7) for a_(t) coincide with (1.6) for a,jt),and a_(t)+~ a,(& Thesystems 
in (4.6) and (1.6) for o_ and 0, are similar in structire; see f7,10/. Solving the Cauchy 

problems (4.6), (4.7), we obtain the desired inner ellipsoidal estimate CL.51 of the attain- 
ability domain. 

We note that ellipsoid E(u_,Q...) is not the ellipsoid ofgreatestvolumecontainedinthe 
attainability domain n/r; in the construction of this ellipsoid the maximization of the vol.- 
ume held only locally, "in the small". Estimates (1.51, (4.6), (4.7) can be used only when 
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constraints (1.4) are nonellipsoidal. In this case we should first construct ellipsoids con- 

tained in the sets of initial data and constraints on the control, and, next, apply the 
results obtained. Estimates (1.5) can be used for estimating the attainability dcmains of 
controlled systems, for estimating the perturbations (if u(t) is a perturbation), for obtain- 
ing guaranteed estimates in differential games on the basis of the extremal aiming rule /l, 

2/. Thus, if the inner estimate of the pursuer's attainability domain absorbs the outer 
estimate of the evader's attainability domain, then absorption automatically obtains for the 
attainability domains, which under the conditions specified guarantees capture. Estimates 

(1.5) enable us also to obtain two-sided bounds on the functional's extremum in optimal con- 
trol problems. For a terminal functional of form J = F(z(T)), where F(z)is a prescribed 
scalar function and T>> to is the fixed process termination instant, we have the obvious 
two-sided estimates 

mikE+ F (2) < min J = min&W(r) F (z) \< min,xEE_F (z), E_ = E (a- (T), Q- (TN, E, = E (a, (T), Q, (TN 

5. As an example we consider the second-order controlled system (the subscripts denote 
components of vectors z and a-) 

dz,/dt=z,,dz~idt=u, Iul<l,n=2,m=~ (5.1) 

For system (5.1) the matrices and vectors in (1.1) and (4.6) equal 

(5.2) 

We take matrix A in the form (Qij are the elements of matrix Q_) 

A = -;1* u ill II (5.3) 

It can be verified that matrix (5.3) satisfies conditions (4.3) if R is given by formula 
(5.2). Substituting equalities (5.2) and (5.3) into system (4.6), we obtain 

da,ldt = a,, da,idt = 0, dQJdt = 2Q,,, dQ,,ldt = QI,, dQ,,ldt = 2 (QnQoa - Qa”)“‘Q,l+ (5.4) 

For simplicity we assume the initial ellipsoid (1.4) as a point, namely, the origin, so that 
the initial conditions (4.7) have the form 

q (0) = Qtj(0) = 0, i, f = 1, 2 (5.5) 

The solution of system (5.4) for a(t) with initial conditions(5.5) is D (t)s 0. We seek the 
solution of Cauchy problem (5.4), (5.5) for Q_(t) in the form 

Qa = b,t', Qm = W, Qn, = b,t’ (5.6) 

I where b,, 4, b, are undetermined coefficients. 
Substituting (5.6) into (5.41, we find the unique 
nontrivial solution 

bI = 1118, bz = 119, b, = 113 

We introduce the variables 

El = qt-‘, Et = z*t-1 

(5.7) 

(5.8) 

///I l/A I In variables (5.8) the elliosoid (1.31 with center 
a(t)=0 and with matrix (5:6), (5.7).becomes 

0 0.5 . & 
E ((1-9 Q-P 54 51~ - 36 E&+9&J < i (5.9) 

Fig.2 

I 

The semiaxes cl,2 of ellipse (5.9) and the angle 
of inclination a of its major semiaxis with the 
t, -axis equal 

cl,* = 17 & (41)"'1"V6, e, = 0.6102, c, = 0,1288, a = arctg {[(41)V' + 5]/4) = 70°, 67 

Fig.2 shows, in variables (5.8) (only the region &>O is shown), the ellipse E(a_,Q-), the 
exact attainability domain M of system (5.1) (it is bounded by arcs of two parabolas) 
well as the ellipse E(a+,Q+) 

, as 
constructed by integrating system (1.6). In variables (5.8) its 

equation is (see /lo/) 
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E (a,, V+) : (135 iG) 512 - (45/4) 5152 + (912, E*" < 1 

The areas of the three domains indicated equal, respectively, 

I'_ = ;I (n.Z':?) -= 0,24@3, I- nr :,11, ,.+ =m 8n, (!,.,5' 2) ~ 1,248~ 

6. Nonlinear systems. The results obtained above for linear systems (1.1) can be ex- 
tended to the following class of nonlinear systems: 

ax/al 7 c (t)z -t u (5, u, t) (6.1) 

Here v is a prescribed nonlinear vector-function of its arguments; the remaining notation is 
the same as in (1.1). Relative to function u(z, u, t) we assume that the set W(5, t) of its 
values (for any fixed 5. t > t,, I and for all possible admissible controls u) satisfies the 
relations 

E (f- (t), G- (t)) ( M'(r, t) c E (f, (t), G, (t)) (6.2) 

Here f_ and f, are n-dimensional vectors and G- and G, are symmetric (n .( n)-matrices. These 
vectors and matrices are prescribed as time functions for t > t" and define the ellipsoids 
(6.2). Comparing relations (l.l), (1.4) and (6.1) and (6.21, we arrive at the following con- 
clusion. All the estimates presented above are valid as well for the nonlinear systems (6.1) 
if everywhere in these estimates we set Ii(t) I and, in addition, we replace f and G by f_ 
and G_ (for the inner estimates, in formulas (4.1)- (4.7)) or by f, and G, (for the outer 
estimates, in formulas (1.6)). The estimates thus obtained are applicable for a ratheL wide 
class of nonlinear systems (6.1), (6.2), whose right-hand sides can be represented as a sum 
of a linear part not containing the control and of nonlinear bounded summands. These estimat- 
es can be improved if we restrict ourselves to a narrower class of nonlinearities, making the 
form of function v concrete. 

The author thanks A. I. Ovseevich for useful discussions. 
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